### Abstract

Necessary and sufficient conditions for a Markov chain to be ergodic are that the chain is irreducible and aperiodic. This result is manifest in the case of random walks on finite groups by a statement about the support of the driving probability: a random walk on a finite group is ergodic if and only if the support is not concentrated on a proper subgroup, nor on a coset of a proper normal subgroup. The study of random walks on finite groups extends naturally to the study of random walks on finite quantum groups, where a state on the algebra of functions plays the role of the driving probability. Necessary and sufficient conditions for ergodicity of a random walk on a finite quantum group are given on the support projection of the driving state.

Link to journal here.

## 1 comment

Comments feed for this article

May 1, 2020 at 2:05 pm

Research: What Next? | J.P. McCarthy: Math Page[…] After that paper, my interest turned to the problem of the Ergodic Theorem, and in May I visited Uwe in Besancon, where I gave a talk outlining some problems that I wanted to solve. The main focus was on proving this Ergodic Theorem for Finite Quantum Groups, and thankfully that has been achieved. […]